Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.434
Filtrar
1.
Scand J Immunol ; 99(5): e13358, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38605535

RESUMO

Adapter proteins are flexible and dynamic modulators of cellular signalling that are important for immune cell function. One of these, the T-cell-specific adapter protein (TSAd), interacts with the non-receptor tyrosine kinases Src and Lck of the Src family kinases (SFKs) and Itk of the Tec family kinases (TFKs). Three tyrosine residues in the TSAd C-terminus are phosphorylated by Lck and serve as docking sites for the Src homology 2 (SH2) domains of Src and Lck. The TSAd proline-rich region (PRR) binds to the Src homology 3 (SH3) domains found in Lck, Src and Itk. Despite known interactors, the role TSAd plays in cellular signalling remains largely unknown. TSAd's ability to bind both SFKs and TFKs may point to its function as a general scaffold for both kinase families. Using GST-pulldown as well as peptide array experiments, we found that both the SH2 and SH3 domains of the SFKs Fyn and Hck, as well as the TFKs Tec and Txk, interact with TSAd. This contrasts with Itk, which interacts with TSAd only through its SH3 domain. Although our analysis showed that TSAd is both co-expressed and may interact with Fyn, we were unable to co-precipitate Fyn with TSAd from Jurkat cells, as detected by Western blotting and affinity purification mass spectrometry. This may suggest that TSAd-Fyn interaction in intact cells may be limited by other factors, such as the subcellular localization of the two molecules or the co-expression of competing binding partners.


Assuntos
Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Domínios de Homologia de src , Humanos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Células Jurkat , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Tirosina/metabolismo , Ligação Proteica , Quinases da Família src/metabolismo
2.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542228

RESUMO

Recently, we identified a novel mechanism of enzyme inhibition in N-myristoyltransferases (NMTs), which we have named 'inhibitor trapping'. Inhibitor trapping occurs when the protein captures the small molecule within its structural confines, thereby preventing its free dissociation and resulting in a dramatic increase in inhibitor affinity and potency. Here, we demonstrate that inhibitor trapping also occurs in the kinases. Remarkably, the drug imatinib, which has revolutionized targeted cancer therapy, is entrapped in the structure of the Abl kinase. This effect is also observed in p38α kinase, where inhibitor trapping was found to depend on a 'magic' methyl group, which stabilizes the protein conformation and increases the affinity of the compound dramatically. Altogether, these results suggest that inhibitor trapping is not exclusive to N-myristoyltransferases, as it also occurs in the kinase family. Inhibitor trapping could enhance the binding affinity of an inhibitor by thousands of times and is as a key mechanism that plays a critical role in determining drug affinity and potency.


Assuntos
Piperazinas , Pirimidinas , Pirimidinas/farmacologia , Piperazinas/farmacologia , Benzamidas/farmacologia , Mesilato de Imatinib/farmacologia , Proteínas de Fusão bcr-abl/metabolismo , Quinases da Família src/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
3.
Front Immunol ; 15: 1344761, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487529

RESUMO

Background: The importance of CD11b/CD18 expression in neutrophil effector functions is well known. Beyond KINDLIN3 and TALIN1, which are involved in the induction of the high-affinity binding CD11b/CD18 conformation, the signaling pathways that orchestrate this response remain incompletely understood. Method: We performed an unbiased screening method for protein selection by biotin identification (BioID) and investigated the KINDLIN3 interactome. We used liquid chromatography with tandem mass spectrometry as a powerful analytical tool. Generation of NB4 CD18, KINDLIN3, or SKAP2 knockout neutrophils was achieved using CRISPR-Cas9 technology, and the cells were examined for their effector function using flow cytometry, live cell imaging, microscopy, adhesion, or antibody-dependent cellular cytotoxicity (ADCC). Results: Among the 325 proteins significantly enriched, we identified Src kinase-associated phosphoprotein 2 (SKAP2), a protein involved in actin polymerization and integrin-mediated outside-in signaling. CD18 immunoprecipitation in primary or NB4 neutrophils demonstrated the presence of SKAP2 in the CD11b/CD18 complex at a steady state. Under this condition, adhesion to plastic, ICAM-1, or fibronectin was observed in the absence of SKAP2, which could be abrogated by blocking the actin rearrangements with latrunculin B. Upon stimulation of NB4 SKAP2-deficient neutrophils, adhesion to fibronectin was enhanced whereas CD18 clustering was strongly reduced. This response corresponded with significantly impaired CD11b/CD18-dependent NADPH oxidase activity, phagocytosis, and cytotoxicity against tumor cells. Conclusion: Our results suggest that SKAP2 has a dual role. It may restrict CD11b/CD18-mediated adhesion only under resting conditions, but its major contribution lies in the regulation of dynamic CD11b/CD18-mediated actin rearrangements and clustering as required for cellular effector functions of human neutrophils.


Assuntos
Neutrófilos , Quinases da Família src , Humanos , Neutrófilos/metabolismo , Quinases da Família src/metabolismo , Fibronectinas/metabolismo , Antígenos CD18/metabolismo , Adesão Celular , Actinas/metabolismo , Fosfoproteínas/metabolismo , Antígeno de Macrófago 1/metabolismo
4.
PLoS One ; 19(3): e0296230, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38483858

RESUMO

SRC kinase associated phosphoprotein 1 (SKAP1), an adaptor for protein assembly, plays an important role in the immune system such as stabilizing immune synapses. Understanding how these functions are controlled at the level of the protein-protein interactions is necessary to describe these processes and to develop therapeutics. Here, we dissected the SKAP1 modular organization to recognize SRC kinases and compared it to that of its paralog SRC kinase associated phosphoprotein 2 (SKAP2). Different conserved motifs common to either both proteins or specific to SKAP2 were found using this comparison. Two modules harboring different binding properties between SKAP1 and SKAP2 were identified: one composed of two conserved motifs located in the second interdomain interacting at least with the SH2 domain of SRC kinases and a second one composed of the DIM domain modulated by the SH3 domain and the activation of SRC kinases. This work suggests a convergent evolution of the binding properties of some SRC kinases interacting specifically with either SKAP1 or SKAP2.


Assuntos
Fosfoproteínas , Quinases da Família src , Quinases da Família src/metabolismo , Fosfoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Domínios de Homologia de src
5.
ACS Chem Biol ; 19(4): 999-1010, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38513196

RESUMO

Nonreceptor tyrosine kinase c-Src plays a crucial role in cell signaling and contributes to tumor progression. However, the development of selective c-Src inhibitors turns out to be challenging. In our previous study, we performed posttranslational modification-inspired drug design (PTMI-DD) to provide a plausible way for designing selective kinase inhibitors. In this study, after identifying a unique pocket comprising a less conserved cysteine and an autophosphorylation site in c-Src as well as a promiscuous covalent inhibitor, chemical optimization was performed to obtain (R)-LW-Srci-8 with nearly 75-fold improved potency (IC50 = 35.83 ± 7.21 nM). Crystallographic studies revealed the critical C-F···C═O interactions that may contribute to tight binding. The kinact and Ki values validated the improved binding affinity and decreased warhead reactivity of (R)-LW-Srci-8 for c-Src. Notably, in vitro tyrosine kinase profiling and cellular activity-based protein profiling (ABPP) cooperatively indicated a specific inhibition of c-Src by (R)-LW-Srci-8. Intriguingly, (R)-LW-Srci-8 preferentially binds to inactive c-Src with unphosphorylated Y419 both in vitro and in cells, subsequently disrupting the autophosphorylation. Collectively, our study demonstrated the feasibility of developing selective kinase inhibitors by cotargeting a nucleophilic residue and a posttranslational modification site and providing a chemical probe for c-Src functional studies.


Assuntos
Proteínas Tirosina Quinases , Transdução de Sinais , Proteína Tirosina Quinase CSK/metabolismo , Fosforilação , Quinases da Família src
6.
Eur J Pharmacol ; 967: 176389, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38311282

RESUMO

Vasoconstriction induced by levobupivacaine, a local anesthetic, is mediated by increased levels of calcium, tyrosine kinase, c-Jun NH2-terminal kinase (JNK), and phospholipase D, which are associated with prolonged local anesthesia. Epidermal growth factor receptor (EGFR) phosphorylation is associated with vasoconstriction. However, its role in levobupivacaine-induced contractions remains unknown. We determined whether EGFR phosphorylation is associated with levobupivacaine-induced contractions in isolated rat thoracic aortas and identified the underlying cellular signaling pathways. The effects of various inhibitors and a calcium-free solution alone or in combination on levobupivacaine-induced contractions were then assessed. Furthermore, we examined the effects of various inhibitors on levobupivacaine-induced EGFR and JNK phosphorylation and calcium levels in vascular smooth muscle cells (VSMCs) of rat aortas. The EGFR tyrosine kinase inhibitor AG1478, matrix metalloproteinase (MMP) inhibitor GM6001, Src kinase inhibitors PP1 and PP2, and JNK inhibitor SP600125 attenuated levobupivacaine-induced contractions. Moreover, although the calcium-free solution abolished levobupivacaine-induced contractions, calcium reversed this inhibitory effect. The magnitude of the calcium-mediated reversal of abolished levobupivacaine-induced contractions was lower in the combination treatment with calcium-free solution and AG1478 than in the treatment with calcium-free solution alone. Levobupivacaine induced EGFR and JNK phosphorylation. However, AG1478, GM6001, and PP2 attenuated levobupivacaine-induced EGFR and JNK phosphorylation. Moreover, although levobupivacaine induced JNK phosphorylation in control siRNA-transfected VSMCs, EGFR siRNA inhibited levobupivacaine-induced JNK phosphorylation. Furthermore, AG1478 inhibited levobupivacaine-induced calcium increases in VSMCs. Collectively, these findings suggest that levobupivacaine-induced EGFR phosphorylation, which may occur via the Src kinase-MMP pathway, contributes to vasoconstriction via JNK phosphorylation and increased calcium levels.


Assuntos
Cálcio , Receptores ErbB , Quinazolinas , Tirfostinas , Animais , Ratos , Aorta Torácica , Cálcio/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Levobupivacaína/farmacologia , Fosforilação , RNA Interferente Pequeno/metabolismo , Quinases da Família src/metabolismo
7.
Genes Cells ; 29(4): 290-300, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38339971

RESUMO

Lung cancer frequently metastasizes to the bones. An in vivo model is urgently required to identify potential therapeutic targets for the prevention and treatment of lung cancer with bone metastasis. We established a lung adenocarcinoma cell subline (H322L-BO4) that specifically showed metastasis to the leg bones and adrenal glands. This was achieved by repeated isolation of metastatic cells from the leg bones of mice. The cells were intracardially injected into nude mice. Survival was prolonged for mice that received H322L-BO4 cells versus original cells (H322L). H322L-BO4 cells did not exhibit obvious changes in general in vitro properties associated with the metastatic potential (e.g., cell growth, migration, and invasion) compared with H322L cells. However, the phosphorylation of chromosome 9 open reading frame 10/oxidative stress-associated Src activator (C9orf10/Ossa) was increased in H322L-BO4 cells. This result confirmed the increased anchorage independence through C9orf10/Ossa-mediated activation of Src family tyrosine kinase. Reduction of C9orf10/Ossa by shRNA reduced cells' metastasis to the leg bone and prolonged survival in mice. These findings indicate that H322L-BO4 cells can be used to evaluate the effect of candidate therapeutic targets against bone metastatic lung cancer cells. Moreover, C9orf10/Ossa may be a useful target for treatment of lung cancer with bone metastasis.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Ósseas , Neoplasias Pulmonares , Animais , Camundongos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Linhagem Celular Tumoral , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos Nus , Metástase Neoplásica/genética , Quinases da Família src/uso terapêutico , Humanos
8.
Bioorg Med Chem Lett ; 102: 129674, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38408513

RESUMO

Fyn, Blk, and Lyn are part of a group of proteins called Src family kinases. They are crucial in controlling cell communication and their response to the growth, changes, and immune system. Blocking these proteins with inhibitors can be a way to treat diseases where these proteins are too active. The primary mode of action of these inhibitors is to inhibit the phosphorylation of Fyn, Blk, and Lyn receptors, which in turn affects how signals pass within the cells. This review shows the structural and functional aspects of Fyn, Blk, and Lyn kinases, highlighting the significance of their dysregulation in diseases such as cancer and autoimmune disorders. The discussion encompasses the design strategies, SAR analysis, and chemical characteristics of effective inhibitors, shedding light on their specificity and potency. Furthermore, it explores the progress of clinical trials of these inhibitors, emphasizing their potential therapeutic applications.


Assuntos
Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Quinases da Família src , Fosforilação
9.
Bioorg Chem ; 145: 107228, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422592

RESUMO

In this work, readily achievable synthetic pathways were utilized for construction of a library of N/S analogues based on the pyrazolopyrimidine scaffold with terminal alkyl or aryl fragments. Subsequently, we evaluated the anticancer effects of these novel analogs against the proliferation of various cancer cell lines, including breast, colon, and liver lines. The results were striking, most of the tested molecules exhibited strong and selective cytotoxic activity against the MDA-MB-231 cancer cell line; IC50 1.13 µM. Structure-activity relationship (SAR) analysis revealed that N-substituted derivatives generally enhanced the cytotoxic effect, particularly with aliphatic side chains that facilitated favorable target interactions. We also investigated apoptosis, DNA fragmentation, invasion assay, and anti-migration effects, and discussed their underlying molecular mechanisms for the most active compound 7c. We demonstrated that 7c N-propyl analogue could inhibit MDA-MB-231 TNBC cell proliferation by inducing apoptosis through the regulation of vital proteins, namely c-Src, p53, and Bax. In addition, our results also revealed the potential of these compounds against tumor metastasis by downregulating the invasion and migration modes. Moreover, the in vitro inhibitory effect of active analogs against c-Src kinase was studied and proved that might be the main cause of their antiproliferative effect. Overall, these compelling results point towards the therapeutic potential of these derivatives, particularly those with N-substitution as promising candidates for the treatment of TNBC type of breast cancer.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Proteína Tirosina Quinase CSK/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Quinases da Família src , Relação Estrutura-Atividade , Pirimidinas/química , Pirimidinas/farmacologia , Pirazóis/química , Pirazóis/farmacologia
10.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338729

RESUMO

Src family kinases (SFKs) are non-receptor tyrosine kinases that are recognized as proto-oncogenic products. Among SFKs, YES1 is frequently amplified and overexpressed in a variety of human tumors, including lung, breast, ovarian, and skin cancers. YES1 plays a pivotal role in promoting cell proliferation, survival, and invasiveness during tumor development. Recent findings indicate that YES1 expression and activation are associated with resistance to chemotherapeutic drugs and tyrosine kinase inhibitors in human malignancies. YES1 undergoes post-translational modifications, such as lipidation and nitrosylation, which can modulate its catalytic activity, subcellular localization, and binding affinity for substrate proteins. Therefore, we investigated the diverse mechanisms governing YES1 activation and its impact on critical intracellular signal transduction pathways. We emphasized the function of YES1 as a potential mechanism contributing to the anticancer drug resistance emergence.


Assuntos
Neoplasias , Quinases da Família src , Humanos , Proteínas Proto-Oncogênicas c-yes , Linhagem Celular Tumoral , Quinases da Família src/metabolismo , Transdução de Sinais , Resistencia a Medicamentos Antineoplásicos , Neoplasias/tratamento farmacológico , Neoplasias/genética
11.
Nat Commun ; 15(1): 1300, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346942

RESUMO

Osteoclasts are over-activated as we age, which results in bone loss. Src deficiency in mice leads to severe osteopetrosis due to a functional defect in osteoclasts, indicating that Src function is essential in osteoclasts. G-protein-coupled receptors (GPCRs) are the targets for ∼35% of approved drugs but it is still unclear how GPCRs regulate Src kinase activity. Here, we reveal that GPR54 activation by its natural ligand Kisspeptin-10 (Kp-10) causes Dusp18 to dephosphorylate Src at Tyr 416. Mechanistically, Gpr54 recruits both active Src and the Dusp18 phosphatase at its proline/arginine-rich motif in its C terminus. We show that Kp-10 binding to Gpr54 leads to the up-regulation of Dusp18. Kiss1, Gpr54 and Dusp18 knockout mice all exhibit osteoclast hyperactivation and bone loss, and Kp-10 abrogated bone loss by suppressing osteoclast activity in vivo. Therefore, Kp-10/Gpr54 is a promising therapeutic target to abrogate bone resorption by Dusp18-mediated Src dephosphorylation.


Assuntos
Reabsorção Óssea , Osteoclastos , Animais , Camundongos , Osteoclastos/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Quinases da Família src/genética , Quinases da Família src/metabolismo , Camundongos Knockout , Reabsorção Óssea/genética , Receptores de Kisspeptina-1
12.
Cell Commun Signal ; 22(1): 115, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347536

RESUMO

Phosphorylation proteomics is the basis for the study of abnormally activated kinase signaling pathways in breast cancer, which facilitates the discovery of new oncogenic agents and drives the discovery of potential targets for early diagnosis and therapy of breast cancer. In this study, we have explored the aberrantly active kinases in breast cancer development and to elucidate the role of PRKCD_pY313 in triple negative breast cancer (TNBC) progression. We collected 47 pairs of breast cancer and paired far-cancer normal tissues and analyzed phosphorylated tyrosine (pY) peptides by Superbinder resin and further enriched the phosphorylated serine/threonine (pS/pT) peptides using TiO2 columns. We mapped the kinases activity of different subtypes of breast cancer and identified PRKCD_pY313 was upregulated in TNBC cell lines. Gain-of-function assay revealed that PRKCD_pY313 facilitated the proliferation, enhanced invasion, accelerated metastasis, increased the mitochondrial membrane potential and reduced ROS level of TNBC cell lines, while Y313F mutation and low PRKCD_pY313 reversed these effects. Furthermore, PRKCD_pY313 significantly upregulated Src_pY419 and p38_pT180/pY182, while low PRKCD_pY313 and PRKCD_Y313F had opposite effects. Dasatinib significantly inhibited the growth of PRKCD_pY313 overexpression cells, and this effect could be enhanced by Adezmapimod. In nude mice xenograft model, PRKCD_pY313 significantly promoted tumor progression, accompanied by increased levels of Ki-67, Bcl-xl and Vimentin, and decreased levels of Bad, cleaved caspase 3 and ZO1, which was opposite to the trend of Y313F group. Collectively, the heterogeneity of phosphorylation exists in different molecular subtypes of breast cancer. PRKCD_pY313 activates Src and accelerates TNBC progression, which could be inhibited by Dasatinib.


Assuntos
Neoplasias de Mama Triplo Negativas , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Dasatinibe/farmacologia , Camundongos Nus , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Peptídeos/farmacologia , Proteína Quinase C-delta/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Quinases da Família src
13.
Cell Signal ; 117: 111066, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38281617

RESUMO

Lung adenocarcinoma (LUAD) is the most commonly diagnosed subtype of lung cancer worldwide. Inhibitor of growth 3 (ING3) serves as a tumor suppressor in many cancers. This study aimed to elucidate the role of ING3 in the progression of LUAD and investigate the underlying mechanism related to integrin ß4 (ITGB4) and Src/focal adhesion kinase (FAK) signaling. ING3 expression in LUAD tissues and the correlation between ING3 expression and prognosis were analyzed by bioinformatics databases. After evaluating ING3 expression in LUAD cells, ING3 was overexpressed to assess the proliferation, cell cycle arrest, migration and invasion of LUAD cells. Then, ITGB4 was upregulated to observe the changes of malignant activities in ING3-overexpressed LUAD cells. The transplantation tumor model of NCI-H1975 cells in nude mice was established to analyze the antineoplastic effect of ING3 upregulation in vivo. Downregulated ING3 expression was observed in LUAD tissues and cells and lower ING3 expression predicated the poor prognosis. ING3 upregulation restrained the proliferation, migration, invasion and induced the cell cycle arrest of NCI-H1975 cells. Additionally, ITGB4 expression was negatively correlated with ING3 expression in LUAD tissue. ING3 led to reduced expression of ITGB4, Src and p-FAK. Moreover, ITGB4 overexpression alleviated the effects of ING3 upregulation on the malignant biological properties of LUAD cells. It could be also found that ING3 upregulation limited the tumor volume, decreased the expression of ITGB4, Src and p-FAK, which was restored by ITGB4 overexpression. Collectively, ING3 inhibited the malignant progression of LUAD by negatively regulating ITGB4 expression to inactivate Src/FAK signaling.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Animais , Camundongos , Adenocarcinoma/metabolismo , Adenocarcinoma de Pulmão/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Regulação Neoplásica da Expressão Gênica , Integrina beta4/genética , Neoplasias Pulmonares/metabolismo , Camundongos Nus , Quinases da Família src , Humanos
14.
Chin J Integr Med ; 30(4): 299-310, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38212502

RESUMO

OBJECTIVE: To investigate the effect of isorhamnetin on the pathology of rheumatoid arthritis (RA). METHODS: Tumor necrosis factor (TNF)- α -induced fibroblast-like synoviocytes (FLS) was exposed to additional isorhamnetin (10, 20 and 40 µ mol/L). Overexpression vectors for matrix metalloproteinase-2 (MMP2) or MMP9 or SRC were transfected to explore their roles in isorhamnetin-mediated RA-FLS function. RA-FLS viability, migration, and invasion were evaluated. Moreover, a collagen-induced arthritis (CIA) rat model was established. Rats were randomly divided to sham, CIA, low-, medium-, and high-dosage groups using a random number table (n=5 in each group) and administed with normal saline or additional isorhamnetin [2, 10, and 20 mg/(kg·day)] for 4 weeks, respectively. Arthritis index was calculated and synovial tissue inflammation was determined in CIA rats. The levels of MMP2, MMP9, TNF-α, interleukin-6 (IL-6), and IL-1 ß, as well as the phosphorylation levels of SRC, extracellular regulated kinase (ERK), and cyclic adenosine monophosphate response element-binding (CREB), were detected in RA-FLS and synovial tissue. Molecular docking was also used to analyze the binding of isorhamnetin to SRC. RESULTS: In in vitro studies, isorhamnetin inhibited RA-FLS viability, migration and invasion (P<0.05). Isorhamnetin downregulated the levels of MMP2, MMP9, TNF-α, IL-6, and IL-1 ß in RA-FLS (P<0.05). The overexpression of either MMP2 or MMP9 reversed isorhamnetin-inhibited RA-FLS migration and invasion, as well as the levels of TNF-α, IL-6, and IL-1 ß (P<0.05). Furthermore, isorhamnetin bound to SRC and reduced the phosphorylation of SRC, ERK, and CREB (P<0.05). SRC overexpression reversed the inhibitory effect of isorhamnetin on RA-FLS viability, migration and invasion, as well as the negative regulation of MMP2 and MMP9 (P<0.05). In in vivo studies, isorhamnetin decreased arthritis index scores (P<0.05) and alleviated synovial inflammation. Isorhamnetin reduced the levels of MMP2, MMP9, TNF-α, IL-6, and IL-1 ß, as well as the phosphorylation of SRC, ERK, and CREB in synovial tissue (P<0.05). Notably, the inhibitory effect of isorhamnetin was more pronounced at higher concentrations (P<0.05). CONCLUSION: Isorhamnetin exhibited anti-RA effects through modulating SRC/ERK/CREB and MMP2/MMP9 signaling pathways, suggesting that isorhamnetin may be a potential therapeutic agent for RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Quercetina/análogos & derivados , Ratos , Animais , Metaloproteinase 2 da Matriz/metabolismo , Quinases da Família src/metabolismo , Quinases da Família src/farmacologia , Quinases da Família src/uso terapêutico , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Simulação de Acoplamento Molecular , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Inflamação/patologia , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Células Cultivadas , Fibroblastos , Proliferação de Células
15.
Eur Rev Med Pharmacol Sci ; 28(1): 221-230, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38235873

RESUMO

OBJECTIVE: C-terminal Src kinase (CSK), a sarcoma (Src) homologous family kinase, is one of the most important negative regulators. It acts as a tumor suppressor by inhibiting the activity of Src family tyrosine kinases. Paradoxically, CSK is highly expressed in a variety of common tumors. Therefore, we report the expression profile of CSK in pan-cancer patients, focusing on the prognostic value, immune infiltration pattern, and biological function of CSK in gastric cancer. MATERIALS AND METHODS: We used the TCGA database to analyze CSK expression, clinical relevance, prognostic significance, assessment of the tumor immune microenvironment, and GO and Kegg enrichment analysis based on co-expressed genes using a bioinformatics approach. RESULTS: CSK is a protective factor in gastric cancer, and its expression correlates with the level of immune cell infiltration and immune checkpoint molecules. CONCLUSIONS: Our findings suggest that CSK is an independent prognostic factor in gastric cancer and may predict molecular targeting and immunotherapy and provide ideas for its therapeutic strategy.


Assuntos
Neoplasias Gástricas , Quinases da Família src , Humanos , Quinases da Família src/metabolismo , Fosforilação , Proteína Tirosina Quinase CSK/metabolismo , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Prognóstico , Biomarcadores/metabolismo , Microambiente Tumoral
16.
Drug Resist Updat ; 73: 101051, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219531

RESUMO

Trastuzumab resistance in HER2+ breast cancer (BC) is the major reason leading to poor prognosis of BC patients. Oncogenic gene overexpression or aberrant activation of tyrosine kinase SRC is identified to be the key modulator of trastuzumab response. However, the detailed regulatory mechanisms underlying SRC activation-associated trastuzumab resistance remain poorly understood. In the present study, we discover that SRC-mediated YAP1 tyrosine phosphorylation facilitates its interaction with transcription factor AP-2 alpha (activating enhancer binding protein 2 alpha, TFAP2A), which in turn promotes YAP1/TEAD-TFAP2A (YTT) complex-associated transcriptional outputs, thereby conferring trastuzumab resistance in HER2+ BC. Inhibition of SRC kinase activity or disruption of YTT complex sensitizes cells to trastuzumab treatment in vitro and in vivo. Additionally, we also identify YTT complex co-occupies the regulatory regions of a series of genes related to trastuzumab resistance and directly regulates their transcriptions, including EGFR, HER2, H19 and CTGF. Moreover, YTT-mediated transcriptional regulation is coordinated by SRC kinase activity. Taken together, our study reveals that SRC-mediated YTT complex formation and transcriptions are responsible for multiple mechanisms associated with trastuzumab resistance. Therefore, targeting HER2 signaling in combination with the inhibition of YTT-associated transcriptional outputs could serve as the treatment strategy to overcome trastuzumab resistance caused by SRC activation.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Trastuzumab/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Fosforilação , Fator de Transcrição AP-2/metabolismo , Receptor ErbB-2/genética , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Quinases da Família src/metabolismo , Quinases da Família src/uso terapêutico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tirosina/metabolismo , Tirosina/uso terapêutico
17.
PLoS One ; 19(1): e0297166, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38285689

RESUMO

Src is a non-receptor tyrosine kinase participating in a range of neuronal processes, including synaptic plasticity. We have recently shown that the amounts of total Src and its two phosphorylated forms, at tyrosine-416 (activated) and tyrosine-527 (inhibited), undergoes time-dependent, region-specific learning-related changes in the domestic chick forebrain after visual imprinting. These changes occur in the intermediate medial mesopallium (IMM), a site of memory formation for visual imprinting, but not the posterior pole of the nidopallium (PPN), a control brain region not involved in imprinting. Src interacts with mitochondrial genome-coded NADH dehydrogenase subunit 2 (NADH2), a component of mitochondrial respiratory complex I. This interaction occurs at brain excitatory synapses bearing NMDA glutamate receptors. The involvement of Src-NADH2 complexes in learning and memory is not yet explored. We show for the first time that, independently of changes in total Src or total NADH2, NADH2 bound to Src immunoprecipitated from the P2 plasma membrane-mitochondrial fraction: (i) is increased in a learning-related manner in the left IMM 1 h after the end of training; (ii), is decreased in the right IMM in a learning-related way 24 h after training. These changes occurred in the IMM but not the PPN. They are attributable to learning occurring during training rather than a predisposition to learn. Learning-related changes in Src-bound NADH2 are thus time- and region-dependent.


Assuntos
Fixação Psicológica Instintiva , NADH Desidrogenase , Quinases da Família src , Animais , Galinhas , Fixação Psicológica Instintiva/fisiologia , Aprendizagem/fisiologia , Prosencéfalo/fisiologia , Tirosina , Quinases da Família src/metabolismo
18.
J Biomol Struct Dyn ; 42(3): 1582-1614, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37144746

RESUMO

The pyrimidine and fused pyrimidine ring systems play vital roles to inhibit the c-Src kinase. The Src kinase is made of different domains but the kinase domain is responsible for inhibition of Src kinase. In which the kinase domain is the main domain that is made of several amino acids. The Src kinase is inhibited by its inhibitors when it is activated by phosphorylation. Although dysregulation of Src kinase caused cancer in the late nineteenth century, medicinal chemists have not explored it extensively; therefore it is still regarded as a cult pathway. There are numerous FDA-approved drugs on the market, yet novel anticancer drugs are still in demand. Existing medications have adverse effects and drug resistance owing to rapid protein mutation. In this review, we discussed the activation process of Src kinase, chemistry of pyrimidine ring and its different synthetic routes, as well as the recent development in c-Src kinase inhibitors containing pyrimidine and their biological activity, SAR, and selectivity. The c-Src binding pocket has been predicted in detail to discover the vital amino acids which will interact with inhibitors. The potent derivatives were docked to discover the binding pattern. The derivative 2 established three hydrogen bonds with the amino acid residues Thr341 and Gln278 and had the greatest binding energy of -13.0 kcal/mol. The top docked molecules were further studied for ADMET studies. The derivative 1, 2, and 43 did not show any violation of Lipinski's rule. All derivatives used for the prediction of toxicity showed toxicity.


Assuntos
Antineoplásicos , Quinases da Família src , Quinases da Família src/química , Quinases da Família src/metabolismo , Proteína Tirosina Quinase CSK , Pirimidinas/farmacologia , Pirimidinas/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Aminoácidos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química
19.
Chem Biol Drug Des ; 103(1): e14379, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37873688

RESUMO

Designing kinase inhibitors that bind to the substrate site of oncogenic kinases in a promising, albeit less explored, approach to kinase inhibition as it was sought to avoid the issue of untoward off-target modulations. Our previously identified compound KAC-12 with a meta-chlorophenyl substitution was an example of this approach. While it showed confirmed inhibitory activity against cancer cells, this substitution shifted the profile of affected targets away from Src/tubulin which were seen with the parent KX-01. In this paper, we synthesized compounds with ortho-substitutions, and we investigated the effect of such substitutions on their cellular and subcellular activities. The compound N-(4-(2-(benzylamino)-2-oxoethyl)phenyl)-2-(morpholine-4-carbonyl)benzamide (4) exhibited substantial activities against cell lines such HCT116 (IC50 of 0.97 µM) and IC50 HL60 (2.84 µM). Kinase profiling showed that compound 4 trended consistently with KAC-12 as it did not affect Src, but it had more impact on members of the Src family of kinases (SFK) such as Yes, Hck, Fyn, Lck, and Lyn. Both compounds exhibited profound downregulation effects on Erk1/2 but differed on others such as GSK3α/ß and C-Jun. Collectively, this study further support to the hypothesis that small structural changes might bring higher changes in their kinome profile.


Assuntos
Benzamidas , Quinases da Família src , Quinases da Família src/metabolismo , Linhagem Celular , Benzamidas/farmacologia
20.
Cancer Lett ; 582: 216516, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38052369

RESUMO

Triple-negative breast cancer (TNBC) is highly aggressive and metastatic, and has the poorest prognosis among all breast cancer subtypes. Activated ß-catenin is enriched in TNBC and involved in Wnt signaling-independent metastasis. However, the underlying mechanisms of ß-catenin activation in TNBC remain unknown. Here, we found that SHC4 was upregulated in TNBC and high SHC4 expression was significantly correlated with poor outcomes. Overexpression of SHC4 promoted TNBC aggressiveness in vitro and facilitated TNBC metastasis in vivo. Mechanistically, SHC4 interacted with Src and maintained its autophosphorylated activation, which activated ß-catenin independent of Wnt signaling, and finally upregulated the transcription and expression of its downstream genes CD44 and MMP7. Furthermore, we determined that the PxPPxPxxxPxxP sequence on CH2 domain of SHC4 was critical for SHC4-Src binding and Src kinase activation. Overall, our results revealed the mechanism of ß-catenin activation independent of Wnt signaling in TNBC, which was driven by SHC4-induced Src autophosphorylation, suggesting that SHC4 might be a potential prognostic marker and therapeutic target in TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Quinases da Família src/genética , Quinases da Família src/metabolismo , Linhagem Celular Tumoral , beta Catenina/genética , beta Catenina/metabolismo , Proliferação de Células , Via de Sinalização Wnt/genética , Proteínas Adaptadoras da Sinalização Shc/genética , Proteínas Adaptadoras da Sinalização Shc/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...